

ISIS JOURNAL NO. 3 (61), 2025

ANALYSIS OF THE POSSIBILITIES AND LIMITATIONS OF USING BIM - TECHNOLOGIES AS A TOOL FOR MANAGING THE LIFE CYCLE OF CONSTRUCTION FACILITIES

M.A. MESHCHERYAKOVA, O.K. MESHCHERYAKOVA, N.D. DEEV

Meshcheryakova Maria Aleksandrovna, Doctor of Economics, Professor of the Voronezh State Technical University, Russia, Voronezh

Meshcheryakova Olga Konstantinovna, Doctor of Economics, Professor at the Voronezh State Technical University, Russia, Voronezh

Deev Nikita Dmitrievich, Postgraduate Student of the Voronezh State Technical University, Russia, Voronezh

In the context of digitalization of the construction industry, building information modeling are becoming a key tool for managing the life cycle of construction projects from design to operation and demolition. The relevance of the topic is due to the need to increase the efficiency, transparency and manageability of processes at all stages of the life cycle. The purpose of the article is to analyze the possibilities and limitations of using BIM technologies in managing the lifecycle of construction facilities. Because of the conducted research, the main advantages of using BIM revealed, including increased planning accuracy, cost reduction and improved interaction between project participants, as well as existing barriers, namely the lack of uniform standards, the high cost of implementation and the shortage of qualified personnel. The article is useful for specialists in the field of construction and real estate management, offering recommendations on the effective use of BIM at all stages of the object's life cycle.

Keywords: construction, building, life cycle, BIM technologies, modeling, automation, digitalization.

References

1. BIM technologies (global market). Electronic resource. URL: <https://clck.ru/3M27ei> (date of access 04.28.2025).
2. The global BIM market will reach \$28.4 billion by 2032. Electronic resource. URL: <https://clck.ru/3M27fE> (date of access 04/30/2025).
3. Fedosov S.V., Fedoseev V.N., Zaitseva I.A., Voronov V.A. Management of the life cycle a construction facility steady state // Expert: theory and practice. - 2023. - No. 3 (22). - P. 131-137.
4. Zilberova I. Yu., Novoselova I. V., Mailyan V. D., Petrov K. S., Shvets A. E. Prospects for the use of BIM technologies at all stages of the life cycle of an investment and construction project // Modern trends in construction, urban development and territorial planning. - 2023. - No. 1. - P. 44-53.
5. Bulatnikov N.E., Vyborova L.S. BIM technology as a tool for the life cycle of a construction project // International Journal of Humanities and Natural Sciences. - 2024. - No. 10-1 (97). - P. 145-148.
6. Smyshlyaeva E.G. Relevance of using BIM technologies in the construction industry // Bulletin of Science and Practice. - 2022. - No. 3. - P. 279-282.
7. Glazunova V. M., Geraskin M. M. Assessment of the current level of maturity of the use of BIM technologies in the agro-industrial complex // Innovations in Science and Practice: Collection of scientific articles based on the materials of the XII International Scientific and Practical Conference, - Ufa. 2023. - Pp. 78-86.
8. Zagidullina G.M., Ivanova R.M., Novshirvanov M.L. Analysis of current problems of BIM technology development in the capital construction market // Moscow Economic Journal. -2022. - No. 12. - P. 483-500.
9. Gudz S.V. Problems of integration of estimated pricing in information modeling technologies // Stolypin Bulletin. - 2023. - No. 4. - P. 1714-1719.
10. Malinovsky M.A., Ershov A.V., Alenin I.E. Problems and prospects of using BIM technologies to create virtual models of cities in 3D GIS format // Interexpo Geo-Siberia. - 2021. - No. 1. - P. 223-231.

METHODOLOGY FOR COMPREHENSIVE ASSESSMENT OF THE TRANSFORMATION OF INEFFICIENTLY USED INDUSTRIAL FACILITIES AT THE FINAL STAGE OF THEIR LIFE CYCLE

Y.A. ZOLOTUKHINA

Zolotukhina Yana Alekseevna, Senior Lecturer, Voronezh State Technical University, Voronezh, Russia

The article is devoted to the development of a comprehensive methodology for diagnosing and evaluating the effectiveness of the transformation of industrial capital construction facilities that are at the final stage of their life cycle. A systematic approach is proposed that integrates economic, spatial, environmental, and social indicators into a single criterion. The methodological basis of the study is the use of weighted integral indices and the Harrington desirability function, which allows for the aggregation of diverse indicators and the quantification of the redevelopment potential. The integrated assessment methodology allows for the identification of critical risks, the justification of management decisions, and the development of strategies for transitioning from the stagnation phase to the revitalization phase of facilities.

Keywords: life cycle, life cycle stage, identification, operation, conversion, redevelopment, revitalization, integral assessment, sustainable development, inefficiently used industrial capital construction facilities.

References

1. Grabovy, P. G. Modeling of the integrated management system of organizational and technological reliability of industrial development in construction / P. G. Grabovy, V. V. Volgin, A. S. Spirin. – Moscow : Limited Liability Company Information and Publishing Agency "Enlightener", 2023. – 320 p. – ISBN 978-5-4323-0479-7. – EDN OXJVXK.
2. Douglas J. Building Adaptation - Second Edition. Butterworth-Heinemann, 2006. 680 p.
3. Langston, Craig & Wong, Francis & Hui, Eddie & Shen, Liyin. (2008). Strategic assessment of building adaptive reuse opportunities in Hong Kong. *Building and Environment*. 43. 1709-1718. 10.1016/j.buildenv.2007.10.017.
4. Organization of construction and real estate development : Textbook in 3 volumes / V. V. Volgin, A. O. Vongai, K. P. Grabovy [et al.]. – 5th edition. Redesigned and expanded. – Moscow : DIA Publishing House, Enlightener Publishing House, 2024. – ISBN 978-5-4323-0504-6. – EDN BMFIWJ.
5. Alker, Sandra & Joy, Victoria & Roberts, Peter & Smith, Nathan. (2000). The Definition of Brownfield. *Journal of Environmental Planning and Management*. 43. 49-69. 10.1080/09640560010766.
6. Modern trends in architectural renovation of industrial enterprises and industrial complexes / I. Z. Rauzeev, R. F. Mirkhasanov, L. S. Sabitov, Yu. V. Bocharova // *Regional architecture and construction*. – 2022. – № 4(53). – Pp. 161-169. – DOI 10.54734/20722958_2022_4_161. – EDN DAZJBN.
7. Technology of organization of territorial and spatial renewal of urban real estate, concentration and specialization of industrial production / P. G. Grabovy, V. V. Volgin, I. V. Kushchenko [et al.]. – Moscow : Limited Liability Company Information and Publishing Agency "Enlightener", 2024. – 290 p. – ISBN 978-5-6045679-8-2. – EDN MIWUJI.
8. De Sousa, C.A. *Brownfields Redevelopment and the Quest for Sustainability*. Emerald Group Publishing, 2008.
9. Ermekova Karina Mansurovna *Redevelopment as a means of developing industrial areas of the city // A step into science*. 2025. No. 1. URL: https://cyberleninka.ru/article/n/redevelopment_v-kachestve-sredstva-razvitiya-promyshlennyh-territoriy-goroda (accessed: 09/28/2025).

10. Langston C. Adaptive reuse of built heritage // Building Research & Information. 2019. Vol. 47. No. 5. P. 507-513.
11. Douglas J. Building adaptation. 2nd ed. L.: Routledge, 2018. 432 p.
12. Grabovy, P. G. Management of the investment project of reproduction of real estate taking into account risks / P. G. Grabovy, N. I. Trukhina, E. Yu. Okolelova // News of higher educational institutions. Technology of the textile industry. – 2017. – № 1(367). – Pp. 52-56. – EDN YRGIP.
13. Merkulova, V. S. Feasibility study of the reconstruction project / V. S. Merkulova, A. A. Kochegarova // Education. Science. Production : Materials of the X International Youth Forum with International participation, Belgorod, October 01-15, 2018. Belgorod: Belgorod State Technological University named after V.G. Shukhov, 2018. pp. 643-647. - EDN FARWMH.
14. Adams D. Urban development and brownfield sites // Journal of Environmental Planning. 2017. Vol. 60. No. 5. P. 782-799.
15. Wilkinson S.J. Sustainable building adaptation // Innovations in Design. 2014. Vol. 12. No. 3. P. 45-62.
16. Gorbaneva, E. P. Energy optimization of the life cycle of a capital construction facility / E. P. Gorbaneva, S. G. Sheina, I. A. Kosovtseva // Scientific Journal. Engineering systems and structures. – 2023. – № 1(51). – Pp. 8-14. – EDN PNZAVM.
17. Alker S. Brownfield regeneration // Environmental Planning. 2000. Vol. 43. No. 1. P. 49-69.
18. De Sousa C.A. Brownfield redevelopment // Urban Studies. 2008. Vol. 45. No. 3. P. 601 626.
19. Baronin S. A., Mishchenko V. Ya., Gushchina E. S. Ecological-oriented integrated development based on the urban-planning mechanism of rehabilitation of depressed territories // Scientific Journal of Construction and Architecture. – 2025. – № 2(78). – Pp. 141-152. – DOI 10.36622/2541-7592.2025.78.2.013. – EDN QKVVHF.
20. Petryanina, L. N. The concept of technical and economic assessment of urban development reconstruction / L. N. Petryanina, M. A. Derina, Yu.S. Sergunina // Regional architecture and construction. – 2020. – № 1(42). – Pp. 212-217. – EDN RWTHNC.
21. Jacobs J. The death and life of great American cities. N.Y.: Random House, 2016. 458 p.
22. Strategy of spatial development of the Russian Federation for the period up to 2025 (approved by Decree of the Government of the Russian Federation dated February 13, 2019 No. 207r)
23. Proskurin, D. K. Transformation as one of the most important stages of the life cycle of industrial urban areas / D. K. Proskurin, Ya. A. Zolotukhina // Scientific Journal. Engineering systems and structures. – 2024. – № 2(56). – Pp. 6-16. – EDN YJPHTM.
24. Zolotukhina, Ya. A. Enlarged technical and economic assessment of the costs of the technopark development (on the example of the inefficiently used territory of the Kominternovsky district of Voronezh) / Ya. A. Zolotukhina, D. K. Proskurin // Construction and real estate. – 2025. – № 2(17). – Pp. 6-12. – EDN WYFTFB.

DOI: 10.36622/2074-188X.2025.79.79.002

LIFE CYCLE COST THE "GREEN" APARTMENT BUILDING

O. K. MESHCHERYAKOVA, E. N. SOROCHAN, D. E. KURBAKOV, E. V. ROMANENKO

Meshcheryakova Olga Konstantinovna, Doctor of Economics, Professor, Department of Technology, Construction Organization, Expertise and Real Estate Management, Voronezh State Technical University (VSTU), Voronezh, Russia

Sorochan Elena Nikolaevna, PhD in Engineering, Associate Professor, Director of the Institute of Construction, Architecture and Housing and Communal Services (IAIzHKH), Priazovsky State Technical University, Russia, Mariupol

Kurbakov Dmitry Egorovich, Assistant Professor at the Department of Industrial and Civil Engineering, Priazovsky State Technical University, Mariupol, Russia, specialist in engineering surveys and architectural and construction design (included in the registers of NOPRIZ and NOSTROI), General

Director of the accredited construction testing laboratory Felix LLC, Russia, Voronezh Region, P. G. T. Podgorensky

Romanenko Evgeny Vyacheslavovich, Postgraduate student, Voronezh State Technical University, Russia, Voronezh

The study found that the main trend in the global construction practice is sustainable architecture, that is, the construction of facilities based on environmental friendliness, energy efficiency and digital systems. To motivate the practical implementation of new approaches by developers, it is necessary to commercially stimulate the principles used in the construction of apartment buildings that meet "green" standards. This becomes possible when there are immediate benefits from increasing investment attractiveness, accelerating sales, increasing the cost per square meter of housing without reducing demand, and reducing operating costs.

The article discusses the issues of increasing the cost of building "green" houses and operational savings. It has been proven that with effective development, it is even more profitable to build high-quality housing that meets "green" standards than to build an average apartment building. At the same time, the median revenue of developers can show a twofold or even threefold increase.

Keywords: the life cycle of a real estate object, sustainable architecture, the concept of digitalization, "green" standards, apartment building, residential complex, operating costs, life cycle cost.

References

1. Sustainable development and infrastructure. Overview of trends in Russia and the world // State Development Corporation "VEB.RF". – URL: https://xn--90ab5f.xn--p1ai/downloads/spief_sd_short_final_02.05.2021_1.pdf (accessed: 05.08.2025).
2. Rakic, B. Holistic management of marketing sustainability in the process of sustainable development / B. Rakic, M. Rakic // Environmental Engineering and Management Journal. – 2015. – Vol. 14, No. 4. – P. 887-900. – DOI 10.30638/eemj.2015.100.
3. Support for housing construction projects in certain regions of the Russian Federation. – URL: <https://дом.рф/preferential-programs/project-building/> (accessed: 05.08.2025).
4. Experts: measures for the development of "green" construction will contribute to improving the quality of new buildings. – URL: <https://erzrf.ru/news/eksperty-mery-po-razvitiyu-zelenogo-stroitelstva-budut-sposobstvovat-povysheniyu-kachestva-novostroyek?regions=PФ&tag=Green%20construction> (accessed: 05.08.2025).
5. THE HOUSE. Russian Federation: the number of energy-efficient apartment buildings under construction in Russia has increased by 14%. – URL: <https://erzrf.ru/news/domrf-chislo-stroyashchikhsya-energoeffektivnykh-mnogokvartirnykh-domov-v-rossii-vyroslo-na-14?topType=0&date=170402&tag=Digital%20build> (accessed: 05.08.2025).
6. Prerequisites for the creation of the "green" GOST. – URL: https://xn--80az8a.xn--d1aqf.xnp1ai/%D0%B0%D0%BA%D0%B0%D0%B4%D0%B5%D0%BC%D0%B8%D1%8F/%D0%B7%D0%B5%D0%BB%D0%B5%D0%BD%D1%8B%D0%B9_%D1%81%D1%82%D0%B0%D0%BD%D0%B4%D0%B0%D1%80%D1%82 (accessed: 05.08.2025).
7. The Concept of digitalization of apartment buildings for the period up to 2030 has been approved // Website of the Ministry of Digital Development, Communications and Mass Media of the Russian Federation (Mincifra). – URL: <https://digital.gov.ru/news-projects/utverzhdena-konceptiya-czifrovizacii-mnogokvartirnyh-domov-na-territorii-rossijskoj-federacii-na-period-do-2030-goda> (accessed: 05.08.2025).
8. Myths and reality: the development of "green" construction in Russia. – URL: <https://stroygaz.ru/publication/construction/mify-i-realnost-razvitiye-zelenogo-stroitelstva-v-rossii/> (date of access: 08/05/2025).
9. Economics of sustainable development. – URL: <http://www.economdevelopment.ru/> (accessed: 05.08.2025). Is it profitable to spend money on "green" technologies in Russia? – URL: <https://realty.rbc.ru/news/58ac2cfb9a79471ffbcfc64b> (accessed: 05.08.2025).

10. Is it profitable to spend money on "green" technologies in Russia? – URL: <https://realty.rbc.ru/news/58ac2cfb9a79471ffbcfc64b> (date of request: 08/05/2025).
11. New energy efficiency requirements for buildings and rules for determining the energy efficiency class of the MCD. – URL: <https://erzrf.ru/news/novyye-trebovaniya-energoeffektivnosti-dlya-zdaniy-i-pravila-opredeleniya-klassa-energoeffektivnosti-mkd> (accessed: 05.08.2025).
12. Baronin, S. A. Development of housing construction strategies based on the concept of sustainability and eco-oriented development / S. A. Baronin, E. S. Gushchina // Housing Strategies. – 2023. – Vol. 10, No. 3. – pp. 237-256. – DOI 10.18334/zhs.10.3.118996.
13. Romanikhin, A. S. Practical recommendations for saving total cost of ownership and managing prospective total cost of ownership using the example of commissioned real estate objects / A. S. Romanikhin, Yu. O. Smirnova, E. O. Kazakova // Education and Science in the modern world. Innovation. – 2024. – № 1(50). – Pp. 57-66.
14. Gureev, M. V. A model for forecasting material resources and estimated cost at the early stages of the life cycle of construction facilities / M. V. Gureev, A. N. Makarov // Bulletin of MGSU. – 2024. – Vol. 19, No. 11. – pp. 1835-1849. – DOI 10.22227/1997-0935.2024.11.1835-1849.

DOI: 10.36622/2074-188X.2025.19.90.003

ARCHITECTURAL AND STRUCTURAL SOLUTIONS FOR RELIGIOUS STRUCTURES IN THE RUSSIAN NORTH

A.N. GOIKALOV

Goykalov Andrey Nikolaevich, Ph.D., Associate Professor, Voronezh State Technical University, Russia, Voronezh

The article examines the architectural and structural features of wooden churches in the Russian North, with a brief historical overview of the "triple" of the Vorzogorsk Pogost in the Arkhangelsk Region. The authors' field studies of churches from the 17th to 19th centuries are presented in the form of measured drawings and photographic evidence. The plan shapes and roof tops of the structures under study are identified and classified, and the materials and design solutions are described. This comprehensive information confirms the spiritual value, significance, and necessity of preserving wooden architecture in modern Russia.

Keywords: wooden architecture, temple, log house, completion, quadrangle, octagon, log.

References

1. Opolovnikov, A.V. Wood and Harmony: Images of Wooden Architecture in Russia / A.V. Opolovnikov, E.A. Opolovnikova // – M.: Opolo, 1998. - 208 p.
2. Opolovnikov, A.V. Russian Wooden Architecture. Civil Architecture: Northern Village, Courtyard Complex, Outbuildings and Bridges, Industrial Buildings, Architectural Details and Fragments / A.V. Opolovnikov; – M.: Iskusstvo, 1983. – 287 p.
3. Bode, A.B. Wooden Churches of the Onega Pomorie in the 17th–19th Centuries / compiled and edited by A.B. Bode. Moscow: Progress-Tradition. 2023, 448 pages.
4. Bode, A.B. Preservation of Wooden Architecture Monuments of the Russian North: Paths, Possibilities, Initiatives / compiled and edited by A.B. Bode. Moscow: ANO Tradition, 2023, 80 pages.
5. Shcheglov, A.S. Engineering restoration of architectural monuments: textbook for students of specialty 270200 "Reconstruction and restoration of architectural heritage" / A.S. Shcheglov, A.A. Shcheglov A.A. – M.: ASV Publishing House, 2016. – 520 p.
6. Goykalov, A.N. Study of the technical condition of historical buildings and analysis of the preservation of the stone masonry of load-bearing structures // A.N. Goykalov, V.I. Shcherbakov // Engineering and Construction Bulletin of the Caspian Region. - 2022. - No. 1 (35). - P. 15-19.

7. Goykalov, A.N. Analysis of the life cycle of religious historical buildings of the Voronezh region / A.N. Goykalov, M.V. Novikov, V.A. Goykalova // Scientific journal. Engineering systems and structures. - 2024. - No. 3 (57). - P. 6-14.
8. Davies Richard. Wooden Churches: Travelling in the Russian North. Published by White Sea Publishing, London, 2011. ISBN 10: 0957045603. - Pp. 256.

DOI: 10.36622/2074-188X.2025.37.87.004

LANDSCAPE AND RECREATIONAL SPACE AS THE MAIN ELEMENT OF ECOLOGICAL SUSTAINABILITY OF THE LIFE CYCLE OF TERRITORIES OF VARIOUS FUNCTIONAL PURPOSES

E.A. ZHIDKO, R.N. ZORIN

Zhidko Elena Aleksandrovna, Doctor of Technical Sciences, Professor, Voronezh State Technical University, Voronezh, Russia

Zorin Ruslan Nikolaevich, Senior Lecturer, Voronezh State Technical University, Voronezh, Russia

The following issues are considered: the current state of interaction between the city and the environment, i.e. conflict situations related to the degradation of natural urban components; basic principles of the formation of a sustainable urban environment: factors determining the formation of a system of landscape and recreational spaces of the urban environment. The functional essence of landscape and recreational activities as an important component of the ecological sustainability of the infrastructure of the urban agglomerations life cycle is revealed. Examples of recreational areas for various population groups are considered.

Keywords: landscape and recreational spaces, environment, life cycle of territories, ecological sustainability

References

1. Zhidko E.A., Zakatov A.B., Zakharenkova I.A. The main stages of landscape thinking formation//Engineering systems and structures. - 2023. - № 1(51). - P. 31-36.
2. Topolya E.S. Modern ecological and recreational assessment of the water park recreation areas of Voronezh. In the collection: Theoretical and applied problems of landscape geography. VII Milkov readings. Proceedings of the XIV International Landscape Conference. In 2 volumes. Editors A.S. Gorbunov, A.V. Khoroshev, O.P. Bykovskaya. Voronezh, 2023. pp. 306-308. 61 Инженерные системы и сооружения Выпуск №3 (61), 2025
3. Berezhnaya T.V., Berezhnaya A.V. Landscape tourism: its scientific content and territorial development//Bulletin of VIVT. - 2015. - 2014. - From 5-7.
4. Zhidko E.A., Kartavtseva A.Yu. Landscape and recreational space as an important component of ecological sustainability of urban infrastructure// Urban planning. Infrastructure. Communications. - 2025. - № 2 (39). - Pp. 23-30.
5. Ilchenko I.A. The city's green space system as an environmental factor of the urban microclimate. // Bulletin of the Taganrog Institute of Management and Economics. - 2014. - No. 1. - pp. 37-41.
6. Nikolaev V.A. Landscape science. Aesthetics and design. / V.A. Nikolaev - M.: Aspect Press. 2015. - 176 p .
7. The natural complex of a large city: landscape and ecological analysis / E.G. Kolomyts, G.S. Rosenberg, O.V. Glebova et al. - M.: Nauka; MAIK "Nauka Interperiodica". - 2018. - 286 p.
8. Kurolap S.A., Klepikov O.V., Vinogradov P.M. Integral ecological assessment of the state of the urban environment: Monograph. – Voronezh: Scientific Book Publishing House, 2015. – 231 p.

DOI: 10.36622/2074-188X.2025.83.27.005

USING BCORE-TECHNOLOGY IN CONSTRUCTION

A.A. ARZUMANOV, N.A. PONYAVINA, T.A. STOLYAROVA

Arzumanov Arben Andreevich, Candidate of Technical Sciences, Associate Professor of the Voronezh State Technical University, Voronezh, Russia

Ponyavina Natalia Aleksandrovna, Candidate of Technical Sciences, Associate Professor of the Voronezh State Technical University, Voronezh, Russia

Stolyarova Tatiana Aleksandrovna, Assistant of the Voronezh State Technical University, Voronezh, Russia

The BCORE construction technology is considered, which creates building structures that are environmentally friendly, highly durable, resistant to external influences, as well as the advantages of using this technology

Keywords: construction, technologies, efficiency, competitiveness, construction processes, speed of construction.

References

1. SP 70.13330.2012. Load-bearing and Enclosing Structures. Updated version of SNiP 3.03.01-87 (with Amendments No. 1, 3). Code of Practice : official edition : approved. by Order of the Gosstroy of Russia dated July 25, 2012 No. 109/GS : date of introduction. 2013-07-01 / developed by ZAO Melnikov Central Research Institute of Steel Structures. - Moscow : Ministry of Regional Development of the Russian Federation. – 293 p.
2. SP 16.13330.2011. Steel Structures. Updated version of SNiP II-23-81 (with Amendments No. 1). Code of Practice : official edition : approved. By Order of the Ministry of Construction of Russia dated December 30, 2015 N 984/pr: date of introduction. 2015-30-12 / developed by ZAO "TsNIIPSK im. Melnikov". - Moscow: Ministry of Regional Development of the Russian Federation. – 232 p.
3. Broad Group. (2021). B-Core: The Modern Material from Broad. URL: <http://en.broad.com/Storage/Largedownloads/enxbzztx.pdf>
4. SP 20.13330.2016. Loads and impacts. Updated version of SNiP 2.01.07-85*. Code of Practice: official edition: approved and put into effect by Order of the Ministry of Construction and Housing and Communal Services of the Russian Federation dated 03.12.2016 N 891/pr. – 147 p.
5. Reinforced Concrete Products Plant M500. Specific gravity of building materials [Electronic resource]. URL: <https://m500beton.ru/stat-i-dlya-stroitelei/udelnyj-ves-strojmaterialov/>
6. GOST 27751-2014. Reliability of building structures and foundations. Basic provisions. Put into effect by the Order of the Federal Agency for Technical Regulation and Metrology of December 11, 2014 No. 1974-st. Moscow: Publishing House of Standards, 2015. – 23 p.
7. SP 50.13330.2024. Thermal protection of buildings. Updated version of SNiP 23-02-2003. Code of rules: official edition: approved and put into effect by Order of the Ministry of Construction and Housing and Communal Services of the Russian Federation dated May 15, 2024 N 327/pr. – 120 p.
8. SP 23-101-2004. Design of thermal protection of buildings. Code of practice: official edition: approved and put into effect on June 1, 2004 by joint order of JSC TsNIIpromzdaniy and FSUE TsNS No. 01 of April 23, 2004 – 151 p.
9. Modular Building Institute. (2021). B-Core: The Modern Material from Broad URL: <https://www.modular.org/2021/10/28/b-core-the-modern-material-from-broad/>.

DOI: 10.36622/2074-188X.2025.41.12.006

STUDY OF SUPERPLASTICIZER DOSAGE EFFECT ON STRENGTH INDICES OF CEMENT MIXTURES FOR 3D-PRINT CONSTRUCTIONS

K.S. KOTOVA, P.YU. YUROV, R.R. OVCHAROV

Kotova Kristina Sergeevna, Candidate of Technical Sciences, Associate Professor, Voronezh State Technical University, Voronezh, Russia
Yurov Pavel Yuryevich, PhD student of the Voronezh State Technical University, Voronezh, Russia
Ovcharov Ruslan Romanovich v, Student of the Voronezh State Technical University, Voronezh, Russia

The aim of the work is to establish the dependence of the compressive strength values of fine-grained cement matrix compositions developed for 3D printing on the type and amount of superplasticizing additive introduced. The results of experimental studies to evaluate the kinetics of strength gain of the mixture for each variant of the matrix composition are presented. The results of mechanical tests of samples using Sika ViscoCrete T100 superplasticizer were used as a basis for comparison. The selection of analogues of this superplasticizing additive was made among products from other manufacturers belonging to the same class of polycarboxylate esters, but differing in chemical composition and form of release (in the form of bulk components). Experimentally, individual optimal dosages for each of the studied brands of superplasticizers were established, which amounted to 0.3%. The effectiveness of the superplasticizer was evaluated according to the criteria of the water cement ratio and mechanical strength. As a result of the comparative analysis, the most effective modifier has been identified, the use of which allows achieving the greatest increase in strength.

Keywords: superplasticizer, polycarboxylate esters, mechanical strength, fine-grained cement matrix, 3D construction printing, additive technologies, water-reducing effect.

References

1. Kamalova, Z.A. Superplasticizers in composite concrete production technology / Z.A. Kamalova, R.Z. Rakhimov, E.YU. Ermilova, O.V. Stoyanov // Bulletin of Kazan Technological University. – 2013. – № 8. – P. 16.
2. Kravcov A.V. Study of the influence of superplasticizers based on polycarboxylate ethers on the properties of concrete / Kravcov A.V., Borodina L.M., Cybakin S.V., Sokolov G.M. // Industrial and civil construction. – 2015. – № 10. – S. 39-43.
3. Petrunin S.YU. The influence of the molecular structure of polycarboxylate superplasticizers on the properties of concrete / S.YU. Petrunin, V.N. Tarasov, N.P. Korotkova, A.P. Garnovesov, I.A. Sirotnikina // Alitinform: Cement. Concrete. Dry mixes. – 2016. – № 1(42). – P. 68 77.
4. Tolypina N.M. On the effectiveness of superplasticizers in fine-grained concrete, depending on the type of fine aggregate / N.M. Tolypina, SH.M. Rakhimbaev, E.N. Karpachyova // Bulletin of the Belgorod State Technological University named after V. G. Shukhov. – 2010. – № 3. – P. 60 - 63.
5. Sejimyradov S., Plasticizers and superplasticizers for concrete mixtures / S. Sejimyradov, O. Batyrov, A. Annamammedov, S. Dzhumamyradov // Innovative science. – 2023. – № 4-2. – P. 49-50.
6. Kramar L.YA. Modern superplasticizers for concrete, their application features and effectiveness / L.YA. Kramar, T.N. Chernykh, K.V. Shuldyakov // Building materials. – 2016. – № 11. – P. 21 - 23.
7. Slavcheva, G.S. Construction 3D printing today: potential, challenges, and prospects for practical implementation / G.S. Slavcheva // Building materials. – 2021. – № 5. – P. 28-36. 10.31659/0585-430X-2021-791-5-28-36. DOI: 10.31659/0585-430X-2021-791-5-28-36
8. Yakunina V.A. Concrete mixtures for extrusion in the additive manufacturing industry in construction / V.A. Yakunina, D.V. Kuznecov // National Association of Scientists. – 2022. – № 78. – P. 56-60.
9. Slavcheva, G. S. Analysis and criterial evaluation of the rheological behavior of mixtures for construction 3D printing / G.S. Slavcheva, D.S. Babenko, M.A. Shvedova // Building materials. – 2018. – № 12. – P. 34 - 40. DOI: 10.31659/0585-430X-2018-766-12-34-40.
10. Shvedova M.A. A study of the formation of the adhesive bond "Cement matrix - reinforcing fiber" in composites for construction 3D printing / M.A. Shvedova, G.S. Slavcheva, O.V. Artamonova, K.S. Kotova // Chemistry for Biology, Medicine, Ecology, and Agriculture. Collection of Abstracts from the Third International Symposium. St. Petersburg. - 2024 - P. 87 - 88.

11. Dadabaeva N.U. Analysis of the efficiency of using polycarboxylate superplasticizers in concrete production / N.U. Dadabaeva // Economy and society. – 2024. – №11(126). – P. 852-865.
DOI: 10.36622/2074-188X.2025.30.13.007

FORMATION OF CLUSTERS OF MULTI-STORY RESIDENTIAL BUILDINGS FOR MAKING TECHNICAL AND TECHNOLOGICAL DECISIONS ON THEIR RENOVATION

S.I. MATRENINSKY, A.S. TANKEEV, A.V. USTYAN

Matreninsky Sergey Ivanovich, Candidate of Technical Sciences, Associate Professor, Voronezh State Technical University, Voronezh, Russia

Tankeev Alexander Semenovich, Candidate of Architecture, Head of the Department of Urban Planning, Voronezh State Technical University, Voronezh, Russia

Ustyan Alexander Vladimirovich, Master's Student, Voronezh State Technical University, Voronezh, Russia

A significant part of residential buildings on the territory of cities and settlements of the Russian Federation requires the adoption of early decisions on their renovation and adaptation to current standards. One of the approaches to the effective renovation of multi-storey residential buildings may be their clustering (grouping of objects) by similarity of characteristics. The formation of clusters of residential multi-storey buildings will allow the use of similar repair and reconstruction technologies for their renovation with the possibility of implementing a flow-based method of work.

Keywords: residential buildings, cluster formation, criteria features, data normalization, distance matrix.

References

1. A methodological approach to the synthesis of rational options for the reconstruction and modernization of mass residential areas / S. I. Matreninsky, V. Ya. Mishchenko, E. A. Solntsev, Le Trong Hai // Industrial and civil engineering. – 2010. – № 1. – pp. 31-34.
2. Matreninsky, S. I. Methodological Approach to the Classification of Areas of Compact Built Up Development Areas for Selecting Variants of Actions and Sequence of Technical and Technological Solutions for the Renovation of these Areas / S. I. Matreninsky, V. Ya. Mishchenko, I. E. Spivak // WSEAS Transactions on Environment and Development. – 2016. – Vol. 12. – P. 108-117.
3. Matreninsky, S. I. Formation of classes of urban environment areas for their renovation / S. I. Matreninsky, V. Ya. Mishchenko, V. A. Chertov // MATEC Web of Conferences, Ho Chi Minh City, 02–05 марта 2018 года. Vol. 193. – Ho Chi Minh City: EDP Sciences, 2018. – P. 01014. – DOI 10.1051/matecconf/201819301014.
4. Methodological approach to planning the reconstruction of urban environment / S. I. Matreninsky, E. P. Gorbaneva, A.V. Mishchenko, N. V. Bredikhina // Journal of Applied Engineering Science. – 2022. – Vol. 20, No. 1. – P. 206-211. – DOI 10.5937/jaes0-34560.
5. Mandel, I.D. Cluster analysis [Text] / I.D. Mandel, Moscow: Finance and Statistics, 1988. 176 p.
6. Prokhorenkov, P. A. Methods of cluster analysis in regional research / P. A. Prokhorenkov, T. V. Reger, N. V. Gudkova // Fundamental research. – 2022. – No. 3. – pp. 100-106.
7. Smolyar I.M. Terminological dictionary of urban planning. Moscow: ROKHOS, 2004. p. 52.

DOI: 10.36622/2074-188X.2025.45.90.008

COLOR AS AN INDICATOR OF THE LIFE CYCLE OF HISTORICAL BUILDINGS (ON THE EXAMPLE OF THE ARCHITECTURE OF THE CENTER OF THE CITY OF VORONEZH)

A.R. ZORINA, E.E. PROKSHITS, O.A. SOTNIKOVA

Zorina Anna Ruslanovna, Student, Voronezh State Technical University, Russia, Voronezh
Prokshits Ekaterina Evgenievna, Senior Lecturer, Voronezh State Technical University, Russia, Voronezh
Sotnikova Olga Anatolyevna, Doctor of Technical Sciences, Professor, Voronezh State Technical University, Russia, Voronezh

The article examines the role of the color scheme of facades in the context of the life cycle of historical buildings. Using the example of architectural monuments in Voronezh from different eras, it is shown that color is not only an aesthetic category, but also a diagnostic feature that reflects the stages of an object's existence: construction, reconstruction, change of functional purpose, restoration, and modern adaptation. The introduction of a quantitative approach to the analysis of color palettes allows for the formalization of visual perception and the establishment of correlations between chromatic characteristics and historical and architectural periods.

Keywords: building life cycle, historical architecture, facade color, polychromy, color analysis.

References

1. Goikalov, A.N. Analysis of the life cycle of religious historical buildings in the Voronezh region / A. N. Goikalov, M. V. Novikov, V. A. Goikalova // Engineering systems and structures. – 2024. – № 3(57). – Pp. 6-14.
2. Goikalov, A.N. The life cycle of religious historical buildings in the Voronezh region / A. N. Goikalov, E. A. Korsukova, V. A. Goikalova // Methodology of environmental safety : collection of scientific papers of the XVII International Scientific and Practical Conference, Simferopol, October 14 17, 2024. Simferopol: IT "Arial", 2024, pp. 25-29.
3. Zulfikarova T. V., Novikov M. V., Goikalov A. N. Research and preservation of historical engineering structures - stone gates of the city of Borisoglebsk. // Engineering systems and structures. – 2024. – № 3(57). – Pp. 60-68.
4. Boldyrev, A.M. Preservation and modern use of historical buildings in Voronezh urban development / A.M. Boldyrev, V. I. Shcherbakov, A. N. Goikalov, T. V. Bogatova // News of higher educational institutions. Construction. – 2022. – № 1(757). – Pp. 82-91.
5. Tkachuk, A.E. Method of assessing the characteristics of architectural lighting of buildings / A. E. Tkachuk, O. A. Sotnikova, A. N. Goikalov // Engineering and Construction Bulletin of the Caspian Region. – 2021. – № 2(36). – Pp. 47-53.
6. Goikalov, A.N. Development of a method for assessing the quality of the architectural and historical environment / A. N. Goikalov, T. V. Makarova, A. Yu. Semenikhina // Engineering and Construction Bulletin of the Caspian Region. – 2022. – № 1(39). – Pp. 73-79.
7. Nankevich A.A. Color systems as a way of representing color categories. A scientific result. Social and humanitarian studies. – 2022. – №8 (2). – C. 77-93.
8. In a nutshell about the CIELAB color space: the website. – URL.: <https://colorscript.ru/color/a/color-lab-shortly?ysclid=mh1sjcxoh1482643078> (accessed 10.10.2025). – Text: electronic.
9. Our history: the website. – URL.: <https://nashahistory.ru/news/kultura/voronezhskiy-dvorec-istoriya-i-arkhitektura> (accessed 10.10.2025). – Text: electronic.
10. Novichikhin, E.G. The pride of Russian architecture: the history of the administration building of the Southeastern Railway. Voronezh: South-Eastern Railway, Library. – 127 p.
11. Chesnokov, G. A. Architecture of Voronezh: history and modernity. Voronezh: Voronezh State Academy of Architecture and Civil Engineering, 1999. 396 p.
12. Akinshin, A. N. Notes of an old pedestrian: a walk along Bolshaya Dvoryanskaya- Revolution Avenue / A. N. Akinshin, O. G. Lasunsky // Voronezh: Pravdivtsev and Co., 2002. 350 p.

INCREASED PROTECTION OF LARGE-SIZED PRODUCTION BUILDINGS AGAINST INTERNAL LOCALIZED EXPLOSIONS WITH THE USE OF BLAST-RELIEF SANDWICH PANELS

E. S. RASSKAZOV

Rasskazov Evgenii Stepanovich, Postgraduate student, Head of the Department of Occupational Health, Safety and Environment at JSC “PESCO Energy & Resources”, Moscow, Russia

Protecting industrial buildings from local emergency explosions is a complex, multifaceted task. This paper provides an overview of key research in the field of explosion protection and presents a theoretical study aimed at improving the level of protection of industrial large-sized buildings from internal local deflagration explosions. The problem of the influence of wave effects on the structures of industrial large-sized buildings is identified. Mathematical models of quasi-static and wave loading of building structures are analyzed. Based on theoretical research, new recommendations for protecting buildings from wave phenomena of deflagration explosions have been developed, which require further experimental confirmation.

Keywords: compression wave, impulse of the compression wave, explosion venting constructions, resonant waves, deflagration explosion, perforated sandwich panels

References

1. Komarov A.A., Kazennov V.V., Gusev A.A., Gromov N.V. Criterion of quasi-staticity of explosive pressure of gas-vapor-air mixtures in premises// Fire and Explosion Safety. - 2015. Vol 24. - No 8. - P. 56-61. DOI:10.18322/PVB.2015.24.08.56-61.
2. Federal Law of July 22, 2008 No. 123-FZ Technical Regulation on Fire Safety Requirements.
3. Set of rules SP 56.13330.2021 “SNiP 31-03-2001 Industrial buildings” (approved by order of the Ministry of Construction and Housing and Utilities of the Russian Federation dated December 27, 2021 No. 1024/pr).
4. Russian national standard GOST R 56288–2024 "Easy-to-remove double-glazed window structures for buildings. Technical conditions" (approved and put into effect by order of the Federal Agency for Technical Regulation and Metrology dated February 28, 2024, No. 251-st).
5. NFPA 68 Standard on Explosion Protection by Deflagration Venting.
6. BS EN 1127-1:2019 / EN 1127-1:2011 Explosive atmospheres — Explosion prevention and protection — Basic concepts and methodology.
7. ISO 13702 Oil and gas industries — Control and mitigation of fires and explosions on offshore installations.
8. Komarov A.A., Vasyukov G.V., Zagumennikov R.A., Buzaev E.V. Experimental study and numerical modeling of the process of formation of explosive methane-air mixture in premises // Fire and Explosion Safety. - 2015. Vol 24. - No 4. - P. 30-38.
9. Gorev V.A., Korolchenko A.D. Influence of easy-release structures on overpressure during an explosion in a room // Fire and Explosion Safety. - 2022. Vol 31. - No 3. - P. 12–23. DOI: 10.22227/0869-7493.2022.31.03.12-23.
10. Hequn Min, Huading Lou, Ningning Rong, Yuchen Zhao Acoustic performance of micro-perforated panel sound absorbers with paralleled coiled-up cavities for noise reduction in traffic tunnels and Environment/Volume <https://doi.org/10.1016/j.buildenv.2025.113003>.
11. Russian national standard GOST R 59684–2021 "Steel sandwich panels of modular construction. Technical conditions" (approved and put into effect by Order No. 968-st of the Federal Agency for Technical Regulation and Metrology dated September 15, 2021) (with amendments and additions).

12. Rasskazov E.S., Korolchenko D.A. Application of easy-release sandwich panels for protection of industrial buildings in Arctic climate conditions. *Fire and Explosion Safety*. - 2024. Vol 33. - No 5 - P.26-50. <https://doi.org/10.22227/0869-7493.2024.33.05.26-50>.
13. Lou H, Rong N, Zhao Y and Min H (2023) Noise impact evaluations of an outdoor air filter tower in urban blocks. *Front. Environ. Sci.* 11:1182339. doi: 10.3389/fenvs.2023.1182339. ISBN: 979-10-93321-27-1.
14. Zhou, N.; Shi, Z.; Li, X., Chen, B.; Liang, Y.; Li, Z.; Yang, C.; Liu, X., Huang, W.; Yuan, X. Study on the Deflagration Characteristics of Methane–Air Premixed Gas in Sudden Expansion Pipelines. *Energies* 2025, 18, 1301. <https://doi.org/10.3390/en18051301>.
15. Gorev V.A., Salymova E.Yu. Use of sandwich panels as effective easy-release structures during internal explosions in industrial buildings // *Fire and Explosion Safety*. - 2010. Vol 19. - No 2. - P. 41-44.
16. Komarov A.A., Gromov N.V., Ryadchenko L.V. Process of formation of explosive mixture in experimental chamber. *Fire and Explosion Safety*. - 2025. Vol 34. - No 2 - P. 20-31. <https://doi.org/10.22227/0869-7493.2025.34.02.20-31>
17. Bradley, D., Gaskell, P. H., Gu, X. J., and Palacios, A. (2016). "Turbulent burning velocities and flame acceleration in gas explosions." *Combustion and Flame*, 164, 400–414.
18. Zhang, Q., Pang, L., & Liang, H. (2018). "Effect of confinement on explosion characteristics of methane-air mixtures." *Journal of Loss Prevention in the Process Industries*, 55, 410–419. 108 *Инженерные системы и сооружения Выпуск №3 (61)*, 2025
19. Komarov A.A., Korolchenko D.A., Phan Tuan Anh. Features of determination of the dynamic amplification factor under impulse loads. *Pozharovzryvobezopasnost / Fire and Explosion Safety*. - 2018. Vol 27. - No 2-3. - P.37-43. (in Russian). DOI: 10.18322/PVB.2018.27.02-03.37-43.
20. Hao, H., Li, Z.-X., & Shi, Y. (2016). "Reliability analysis of structures subjected to blast loading." *Structural Safety*, 63, 13–23.
21. Khusnutdinov D.Z., Mishuev A.V., Kazennov V.V., Komarov A.A., Gromov N.V. Emergency explosions of gas-air mixtures in the atmosphere. - M.: MGSU. - 2014. - 80 p.
22. V.A. Gorev, V.V. Molkov. On the dependence of internal explosion parameters on the installation of safety structures in the apertures of the protecting walls of industrial and residential buildings. *Pozharovzryvobezopasnost / Fire and Explosion Safety*. - 2018. Vol 27. - No 10. - P. 6-25. (in Russian). DOI: 10.18322/PVB.2018.27.10.6-25.
23. Occupational safety measures in construction: textbook / V. V. Kolotushkin, S. D. Nikolenko, S. A. Sazonova; Voronezh State Technical University – Voronezh: VSTU Publishing House.

DOI: 10.36622/2074-188X.2025.49.81.010